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The Paris law describing slow crack propagation behaviour in several materials is deduced for craze-prone 
polymers from schematic considerations matching the craze fibril breakdown statistics, first introduced by 
Yang and co-workers, with the Dugdale-Barenblatt model of the plastic zone at the crack tip. The exponent 
in the Paris law is shown to be simply equal to 2p,,, where Pw is the Weibull modulus of the fibril breakdown 
statistics. A promising, if not definitive, agreement between the two parameters is found from literature 
data for several craze-prone polymers. 
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Introduction 
It is now generally agreed that the phenomenon of 

slow crack propagation during fatigue tests in notched 
specimens is reasonably well described for several 
polymers by the Paris law1-3: 

?t = A A K  n ( 1 ) 

where ~ is the crack tip velocity, AK the difference 
between the maximum and the minimum values, Kma x 
and Kmin, of the stress intensity factor at the crack tip, 
and the two parameters A and n are phenomenological 
constants that have to be extracted from experimental 
data. 

For  several homopolymers it has been shown that: 
1. the value of n is, in quite a large range of experimental 

conditions 3-s, independent of the test frequency v; 
2. the value of n is approximately independent of the 

ratio R, defined as6: 

R - Kmln (2) 

gmax 

3. the value of n is barely sensitive to the molecular 
weight M of the tested polymer, at least when M is 
above a critical value 7-9. 

These observations suggest that n could be considered 
as an important,  intrinsic parameter  characterizing the 
slow crack propagation in a given material. However, as 
far as we know, no successful at tempt has been made 
to derive the value of n from existing and well 
corroborated models on the mechanical and molecular 
characteristics of plastic deformation, at least of pure 
crazing, in homopolymers.  

Discussion 
It is now well established that fracture in many glassy 

polymers can be traced to the formation and subsequent 
breakdown of fibrils inside the crazes 1°-14. In a notched 
specimen the crack tip velocity can be reasonably 
assumed to be proportional to the fibril breakdown 
probability Pbd at the crack-craze  interface: 

OC Pbd (3) 
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Yang et al. 11, by means of an approach involving Weibull 
statistics, first introduced for the craze fibrils breakdown 
probability the following expression: 

Pbd(ep, = l -- e x p [ - -  FO(eP~ p'~] 
Vb kew/  I (4) 

where ep is the so-called plastic strain defined as the 
difference between the actual strain and the strain for 
craze nucleation, V o is the initial volume considered in 
the statistics, V b is a volume in which one fibril breakdown 
will be encountered at a reference stress of a b and the 
two coefficients e w and Pw are the Weibull scale parameter  
and Weibull modulus, respectively. The Weibull scale 
parameter  and the Weibull modulus, which have to be 
derived from experimental data, have been demonstrated 
to be independent of the size of the samples considered 11. 

Also because of the details inherent to their 
experiments, performed on thin polystyrene (PS) films 
bonded to annealed copper grids, Yang and co-workers 
did not try to relate the parameters involved in their 
approach with more macroscopic ones - nor did 
researchers who continued studies of the breakdown 
statistics following this first, original method x*'15. 
Nonetheless, referring to Figure 1" and assuming that 
the craze widens by surface drawing having a constant 
fibril volume fraction 1° ~b, it is easy to demonstrate that 
the craze opening displacement at the crack tip, h, is 
approximately related to the plastic strain in the following 
way: 

h(1 - 4~) ~p (5) 
Lo 

Equation (4) can be reformulated in terms of the craze 
opening displacement at the crack tip. 

The next step would be to relate the craze opening 
displacement, which is a quasi-macroscopic parameter  
rarely measured during slow crack experiments, to a more 
macroscopic and more easily detectable one, namely the 
stress intensity factor. The easiest way of doing that is 

*The figure shows a single edge notched specimen, however the 
considerations presented in this paper are independent of the specimen 
geometry 
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Figure l Sketch of a s tandard notched specimen used during fatigue 
experiments. The grey region at the crack tip represents a craze. L o, 
W and B are the specimen's dimensions,  a is the crack depth and h 
the craze opening displacement 

separation principle is introduced, stating that the fatigue 
behaviour of the craze-prone polymers is affected by two 
distinct sets of features which do not overlap: the first 
being described by equation (9) and relating to the 
intrinsic, probabilistic aspects of craze fibril breakdown, 
and the second concerning the peculiar fatigue features, 
i.e. features depending on the variables which control the 
test execution and which are not accounted for by 
equation (9), for e:(ample, the frequency v and the ratio 
R. In mathematical terms, this is equivalent to: 

/ 1 - 4  ~\p~ 2p 
(l = f ( v , R  . . . .  )[trcE,ew)_ - gma x 

/ 1 - C o \  "~ 
= f ( v , g  . . . .  ) 1 ~ )  AK 2"~ (10) 

\ acE*awl  

where f and f are functions only of the test parameters 
and not of the material properties. The fact that the terms 
AK and Kma x keep the same dependence on the Weibull 
modulus is due to their relationship: 

AK 
Kma x - (11) 

1 - R  

to utilize the Dugdale-Barenblat t  model which is now 
well documented to be a good description of the shape 
and size of the crazed zone at the crack tip 16-22. 
Considering its purely geometric constraints it is possible 
to express h as: 

h - K2ax (6) 

acE* 

where K m a  x is the stress intensity factor at the crack tip, 
a c is the compressive stress that counterbalances the 
crazing stress in the plastic zone and E* is the reduced 
Young's modulus. By combining equations (5) and (6) 
with equation (4), we obtain: 

h oc 1 -- exp VbL LocrcE*ew 

We stress here that the use made of the Dugdale model 
is free from the major criticism it encountered in the 
application to craze-prone polymers. The model, in fact, 
does not provide a criterion for crack advance and the 
critical crack opening displacement criterion is often 
introduced in the description, disregarding the fact that 
a true critical craze opening displacement can hardly exist 
for crazes which widen by surface drawing 23. In our 
approach no critical displacement is assumed, the slow 
crack propagation being controlled by fibril breakdown 
statistics, and only the geometrical features of the model, 
which are largely accepted, are applied. 

Considering that for slow crack propagation in bulk 
specimens of glassy polymers it is in general true that: 

2 
Kmax 

<< 1 (8) 
Loa~E* 

we can arrest the Taylor series for equation (7) at the 
first order: 

Vo( 1 -- ~ "~°~KZp~ (9) 
a oc Vb\LoacE ~wJ , max 

Equation (9) can provide information on the fatigue 
behaviour of the craze-prone polymers if a sort of 

It is evident that the validity of equation (10) must be 
carefully restricted to experimental situations in which 
phenomena, like adiabatic heating or discontinuous 
crack propagation, which clearly demonstrate violations 
of any separation principle, are absent or controlled. In 
order to assess all our propositions, equation (10) should 
be accurately tested. At any rate, if the above assumption 
is correct, equation (10), which is derived in a way which 
is completely independent of the Paris law, expresses the 
same form of dependence of the crack tip velocity on the 
variation of the stress intensity factor, AK. Then, what 
is important to check at this point is that: 

n ~ 2pw (12) 

Encouraging evidence for relation (12) is that, as for n, 
Pw has been demonstrated to be approximately 
independent of the molecular weight for a number of 
craze-prone polymers, namely for PS 11, poly(methyl 
methacrylate) (PMMA),  poly(ct-methylstyrene) and a 
full set of compatible blends of PS and poly(2,6- 
dimethyl-1,4-phenylene oxide)14. Also from the numeri- 
cal point of view relation (12) is quite well satisfied by 
a considerable set of experimental data. Berger 14 reports 
a value for Pw = --,3.5 for PMMA at a temperature of 
75°C below the glass transition temperature (approxi- 
mately room temperature), while Williams 6 gives an 
estimate of n = ~ 6 for the same material in a series of 
fatigue experiments with different values of R*. Yang et 
al.l i found a value for Pw = "" 3 in PS, which corresponds 
to the value ofn = 5 found by Michel et al. 8 in the already 
mentioned series of fatigue tests on PS with different 
molecular weight distribution. Also for values of Pw for 
poly(styrene-r-acrylonitrile) not reported in the literature, 
the value of n ( = 6 - 7 )  from Bucknall and Faitrouni's 9 
data is in quite reasonable agreement with our 
assumption. 

We are aware, however, that relation (12) is far from 
confirmed by the data discussed, which come from very 
diverse sets of material. Conclusive proof would require 

*The correspondence between n and 2pw for P M M A  is not completely 
unambiguous:  Kim e t  a l .  7 obtained values of n well above those 
expected from our considerations 
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Figure 2 Plot of A versus (e b - ec) a~ with data from references 7 
and 14 (O) .  The broken line is a guide for the eye. The units of A 
depend on the value of n in equation (1) 

appropriate, ad hoc experimentation which should be 
very carefully designed and performed to be unambiguous 
because the exponent 
craze-prone polymers 
problem is caused by 
polycarbonate, whose 

in the Paris law is similar for all 
(n = 5-7) .  A further, conceptual 
the fact that some polymers, like 
plastic deformation mechanism at 

room temperature is certainly not crazing, have an 
exponent in the Paris law which is similar to that of 
craze-prone materials. Also if this evidence is not in 
contrast with relation (12), it suggests that, underlying 
the slow crack propagation behaviour, a more basic 
aspect of deformation, common to crazing and shear 
yielding, could be involved. 

From equation (10) some other consequences can be 
extracted, that are either in agreement with already 
reported experimental data or can be easily tested. Let 
us consider, for example, the dependence of the crack 
tip velocity on the molecular weight M: the molecular 
weight effects are mainly concentrated in the coefficient 
A of the Paris law, being less important or negligible 
compared with n. Considering that M only slightly 
affects 4) (ref. 10), ac (ref. 24) or E*, equation (10) 
suggests that, for a set of experiments performed in the 
same conditions: 

A oc (ew) -pw (13) 

Yang et al. 11 and Berger 14 measured the fibril stability 
parameter defined as the difference between the average 
strain for fibril breakdown and the strain for craze 
nucleation, % -  ~c, which was, in their experiments, 
equivalent to the Weibull scale parameter and they 
always found an incontestable molecular weight 
dependence: eb--ec increasing with increasing M. 
Figure 2 is a plot of A versus (e b -- e¢) -°w for a series of 
PMMAs with different molecular weights: the values of 
A are derived from data shown in Figure 7 of reference 7, 
while the values of (e b -  e~) -pw are extrapolated for 
the corresponding M from the theoretical curve shown 
in Figure2 of reference l4. The plot shows an 

approximate agreement with relation ( 13 ), but it has only 
a qualitative value, taking into account that at least two 
other different models have been proposed 25'26 in order 
to justify the dependence of the fatigue behaviour on M 
and both exhibit a similar agreement with the 
experimental data. 

Another consequence of equation (10) concerns the 
effects of molecular orientation on slow crack propagation 
behaviour: it is well known that E* and a¢ change with 
molecular anisotropy z7-31. Maestrini and Kramer 15 
showed that the degree of molecular orientation plays 
an important role also on the craze structure, and 
demonstrated that it influences ~b and ew, while Pw is 
unchanged. In principle, then, slow crack propagation 
in a series of materials prepared with different degrees of 
orientation can be predicted using equation (10). 

A final remark involves the physical meaning of ~w and 
of Pw. Following Yang et al. 11: 

( pt = (14) 
-ew- 

where A is the breakdown seed density, i.e. it represents 
the concentration of impurities and local inhomogeneities 
that give rise to the fibril breakdown phenomenon. The 
state of cleanliness of the sample considered strongly 
modifies the values of the Weibull scale parameter and 
modulus with e w = ~ 0.05- ~ 0.15 and Pw = 3-  > 6 for 
ultra-clean, high molecular weight PS samples 11 
According to our approach, fatigue behaviour should 
show the same, strong dependence on the concentration 
of impurities and dust particles in the tested specimens. 
Hence a very simple but effective method for obtaining 
better fatigue or creep performance would be to produce 
cleaner materials. In terms of cleanliness it could also be 
possible to explain the features of fatigue behaviour of 
the rubber toughened polymers with respect to their 
matrix if it is considered that the rubber particles can 
modify the breakdown seed density, as, for example, the 
phenomenon of trapping small particles inside the craze 
texture and the subsequent local fibril breakdown 32 
suggest, the variation of the parameters in the Paris law 
from the matrix to the rubber toughened material could 
be estimated by our model. 

Conclusions 

Using a sort of separation principle, distinguishing the 
probabilistic aspects of fibril breakdown from genuine 
fatigue features, a way of deriving the Paris law for slow 
crack propagation in notched specimens of craze-prone 
polymers was proposed which matches the statistics ideas 
of Yang and co-workers for the phenomenon of craze 
fibril breakdown and the well established Dugdale-  
Barenblatt model. The qualitative, promising agreement 
between the literature data and our results was discussed. 
A consequence of this approach is the possibility of 
explaining the effects of molecular weight, degree of 
molecular anisotropy and presence of a dispersed phase 
on the fatigue behaviour of polymers. 

We believe that, if our idea proves to be correct, it 
could be useful for stating clear connections between 
macroscopic mechanical performance and molecular and 
microscopic features of plastic deformation. This is a 
critical and urgent task from both practical and 
fundamental points of view. 
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